torchinfo,可用来可视化我们的网络模型,查看每层的输出大小和参数大小。
(formerly torch-summary)
Torchinfo provides information complementary to what is provided by print(your_model)
in PyTorch, similar to Tensorflow's model.summary()
API to view the visualization of the model, which is helpful while debugging your network. In this project, we implement a similar functionality in PyTorch and create a clean, simple interface to use in your projects.
本版本torchinfo以替代以前旧的torchsummary和torchsummaryX ,命令也发生了改变。
This is a completely rewritten version of the original torchsummary and torchsummaryX projects by @sksq96 and @nmhkahn. This project addresses all of the issues and pull requests left on the original projects by introducing a completely new API.
Supports PyTorch versions 1.4.0+.
命令:
pip install torchinfo
Alternatively, via conda:
conda install -c conda-forge torchinfo
How To Use
代码:
from torchinfo import summary
model = ConvNet()
batch_size = 16
summary(model, input_size=(batch_size, 1, 28, 28))
输出结果:
================================================================================================================
Layer (type:depth-idx) Input Shape Output Shape Param # Mult-Adds
================================================================================================================
SingleInputNet [7, 1, 28, 28] [7, 10] -- --
├─Conv2d: 1-1 [7, 1, 28, 28] [7, 10, 24, 24] 260 1,048,320
├─Conv2d: 1-2 [7, 10, 12, 12] [7, 20, 8, 8] 5,020 2,248,960
├─Dropout2d: 1-3 [7, 20, 8, 8] [7, 20, 8, 8] -- --
├─Linear: 1-4 [7, 320] [7, 50] 16,050 112,350
├─Linear: 1-5 [7, 50] [7, 10] 510 3,570
================================================================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
Total mult-adds (M): 3.41
================================================================================================================
Input size (MB): 0.02
Forward/backward pass size (MB): 0.40
Params size (MB): 0.09
Estimated Total Size (MB): 0.51
================================================================================================================
文章评论