目录
1. 原理推导
1.1. 直线公式
空间直线的数学定义是,已知直线L上一点M0(x0,y0,c0),以及直线L的方向向量s(m,n,p),那么空间直线L的方程为:
以上是空间直线的标准式方程(点向式方程)。令上面式子的比值为t,那么直线的参数式方程为:
对于知道线段的起点O和终点E,显然方向向量为D=E−O。这时,根据射线的向量方程,线段上某一点P为
转化为参数方程就是:
并且,采取这种公式描述还有个好处,参数t的取值范围为0到1,否则就在直线的两个端点之外。当t取0时,表四起点O;当t取1时,表示终点E;当t取(0,1)范围表示位于O、E端点之间的点。
1.2. 求交
根据数学定义,已知球心坐标C(Cx,Cy,Cz)与球的半径R,球面的公式为:
联立(1)(2)两式,最终会得到一个关于t的一元二次方程:
展开合并同类项,得出关于t的一元二次方程如下:
解这个一元二次方程,该方程有无解,单个解,以及双解三种可能,这也符合空间直线与球面相交的直观认识,要么相切有一个交点,要么相交有两个交点,否则的话没有交点。
2、代码实现
2.1 关键代码
/* 两个向量的差, (vector1 - vector2). */
vec3d vdiff(const vec3d vector1, const vec3d vector2)
{
vec3d v;
v.x = vector1.x - vector2.x;
v.y = vector1.y - vector2.y;
v.z = vector1.z - vector2.z;
return v;
}
/* 两个向量的和, (vector1 + vector2). */
vec3d vsum(const vec3d vector1, const vec3d vector2)
{
vec3d v;
v.x = vector1.x + vector2.x;
v.y = vector1.y + vector2.y;
v.z = vector1.z + vector2.z;
return v;
}
/* 向量的数乘1. */
vec3d vmul(const vec3d vector, const double n)
{
vec3d v;
v.x = vector.x * n;
v.y = vector.y * n;
v.z = vector.z * n;
return v;
}
/* 向量的数乘2. */
vec3d vdiv(const vec3d vector, const double n)
{
vec3d v;
v.x = vector.x / n;
v.y = vector.y / n;
v.z = vector.z / n;
return v;
}
/* 向量的欧几里得范数 */
double vdist(const vec3d v1, const vec3d v2)
{
double xd = v1.x - v2.x;
double yd = v1.y - v2.y;
double zd = v1.z - v2.z;
return sqrt(xd * xd + yd * yd + zd * zd);
}
/* 向量的欧几里得范数 */
double vnorm(const vec3d vector)
{
return sqrt(vector.x * vector.x + vector.y * vector.y + vector.z * vector.z);
}
/* 两个向量的点积*/
double dot(const vec3d vector1, const vec3d vector2)
{
return vector1.x * vector2.x + vector1.y * vector2.y + vector1.z * vector2.z;
}
/*两个向量的叉积 */
vec3d cross(const vec3d vector1, const vec3d vector2)
{
vec3d v;
v.x = vector1.y * vector2.z - vector1.z * vector2.y;
v.y = vector1.z * vector2.x - vector1.x * vector2.z;
v.z = vector1.x * vector2.y - vector1.y * vector2.x;
return v;
}
/* Intersecting a sphere sc with radius of r, with a line p1-p2.
* Return zero if successful, negative error otherwise.
* mu1 & mu2 are constant to find points of intersection.
* 球和直线的相交
*
*/
int sphereline(const vec3d p1, const vec3d p2, const vec3d sc, double r, double *const mu1, double *const mu2)
{
double a,b,c;
double bb4ac;
vec3d dp;
dp.x = p2.x - p1.x;
dp.y = p2.y - p1.y;
dp.z = p2.z - p1.z;
a = dp.x * dp.x + dp.y * dp.y + dp.z * dp.z;
b = 2 * (dp.x * (p1.x - sc.x) + dp.y * (p1.y - sc.y) + dp.z * (p1.z - sc.z));
c = sc.x * sc.x + sc.y * sc.y + sc.z * sc.z;
c += p1.x * p1.x + p1.y * p1.y + p1.z * p1.z;
c -= 2 * (sc.x * p1.x + sc.y * p1.y + sc.z * p1.z);
c -= r * r;
bb4ac = b * b - 4 * a * c;
if (fabs(a) == 0 || bb4ac < 0) {
*mu1 = 0;
*mu2 = 0;
return -1;
}
*mu1 = (-b + sqrt(bb4ac)) / (2 * a);
*mu2 = (-b - sqrt(bb4ac)) / (2 * a);
return 0;
}
sphereline函数代码解释:
1) p1相当于前文说的O点;p2相当于E点;dp相当于OE线段。
2) 根据1)我们知道p1.x = Ox(此时t = 0); p2.x = Ox + Dx(此时t = 1);则dp.x = p2.x - p1.x = Ox + Dx - Ox = Dx;同理:dp.y = Dy;dp.z = Dz,所以 a相当于前文公式(3)中t平方的系数。
3) b相当于公式(3)中t的系数。
4) c相当于公式(3)中的常数项。
5)之后就用一元二次方程的求根公式求线段dp和球的交点。解这个一元二次方程,该方程有无解,单个解,以及双解三种可能,这也符合空间直线与球面相交的直观认识,要么相切有一个交点,要么相交有两个交点,否则的话没有交点
2.2 main()函数的调用
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
vec3d O;
O.x = 30;
O.y = 40;
O.z = 70;
vec3d E;
E.x = 30;
E.y = -40;
E.z = 70;
vec3d Center;
Center.x = 0;
Center.y = 0;
Center.z = 70;
double R = 50;
double res1,res2;
int result = 1;
result = sphereline(O,E,Center,R,&res1,&res2);
qDebug()<<"求解得到的参数t为:";
qDebug()<<"t1:"<< QString::number(res1,'g',5);
qDebug()<<"t2:" <<QString::number(res2,'g',5);
vec3d ex,t2,t3;
double h;
ex = vdiff(E, O); // vector result1-result2
h = vnorm(ex); // scalar result1-result2
ex = vdiv(ex, h); // unit vector ex with respect to result1 (new coordinate system)
/* t2 points to the intersection */
t2 = vmul(ex, res1*h);
t2 = vsum(O, t2);
t3 = vmul(ex, res2*h);
t3 = vsum(O, t3);
qDebug()<<"求解得到如下的交点:";
qDebug()<< QString::number(t2.x,'g',5);
qDebug()<< QString::number(t2.y,'g',5);
qDebug()<< QString::number(t2.z,'g',5)<<endl;
qDebug()<< QString::number(t3.x,'g',5);
qDebug()<< QString::number(t3.y,'g',5);
qDebug()<< QString::number(t3.z,'g',5)<<endl;
return a.exec();
}
调试输出:
本文转自:空间直线与球面的相交算法_intersecting a sphere sc with radius of r, with a -CSDN博客
文章评论