迪杰斯特拉算法
求原点0到其他点的最短路径
#include<iostream>
#include<vector>
#include<string.h>
#define N 10
#define INF 65535
using namespace std;
int graph[N][N];
int dist[N];
int parent[N];
// 迪杰斯特拉算法
/* 找出源点到其他点的最短路径 核心思想: 节点集合V, 已经被访问(找到最短路径)的集合S,和未被访问的集合W 1.每次从W中找到一个距离S最近的点v1 (visited[v1] = false && dist[v1] < INF), 2.将v1 加入到集合S中,即visited[v1] = true 3. 更新以v1为中转点, start -> ... -> v1 -> w w∈W的距离 if (!visited[w] && (graph[v1][w] + dist[v1] < dist[w]) dist[w] = dist[v1] + graph[v1][w] 4. 循环n-1次,直到S中包含了所有节点,即W集合变为空集 体现的是贪心思想: 每次从 W集合中找到一个离S最近的点w 时间复杂度O(n^2) */
int *dijkstra(int v0, int n) {
//是否被访问数组
bool visited[N] = {
false};
//距离数组
//初始被访问节点
dist[v0] = 0;
visited[v0] = true;
int v1 = v0;
parent[v0] = -1;
//遍历其余n-1个点
for (int i = 1; i < n; i++) {
int mind = INF;
//找距离集合S(已经被访问) 最近的一个未被访问的点
for (int j = 0; j < n; j++) {
// 核心过程--选点, 如果j在{V}-{S}中
if (!visited[j]) {
if (dist[j] < mind) {
mind = dist[j];
v1 = j;
}
}
}
//将v1点加入到被访问的集合S中
visited[v1] = true;
// 更新以v1为中转点的节点的距离
for (int i = 0; i < n; i++) {
if (!visited[i] && (dist[i] > dist[v1] + graph[v1][i])) {
dist[i] = dist[v1] + graph[v1][i];
parent[i] = v1;
}
}
}
return dist;
}
int main() {
int ne = 10, nv = 6;
int edges[][3] = {
{
0,1,2},{
0,2,5},{
1,2,1},{
1,3,3},{
2,3,3},{
2,4,4},{
2,5,1},{
3,4,1},{
3,5,4},{
4,5,1}};
//二维整型数组直接利用 memset() 函数初始化时,只能初始化为 0 或 -1 ,否则将会被设为随机值
//手动初始化
for (int i = 0; i < nv; i++) {
dist[i] = INF;
for (int j = 0; j < nv; j++) {
graph[i][j] = INF;
}
}
//初始化边
int start = 0;
for (int i = 0; i < ne; i++) {
int v0 = edges[i][0];
int v1 = edges[i][1];
int w = edges[i][2];
graph[v0][v1] = w;
if (v0 == start) {
dist[v1] = w;
parent[v1] = v0;
}
}
int *dist = dijkstra(start,nv);
for (int i = 0; i < nv; i++) {
cout << "start = "<<start << " end =" << i << " dist = "<< dist[i] << " parent = " << parent[i] << endl;
}
return 0;
}
/* memset初始化二维矩阵 1取最后一个字节 2->16->10 00000001 -> 0x01010101 -> 16843009 0 00000000 -> 00000000 -1 11111111 -> https://blog.csdn.net/qq_53269459/article/details/119535151 dijkstra算法参考:https://baike.baidu.com/item/%E8%BF%AA%E5%85%8B%E6%96%AF%E7%89%B9%E6%8B%89%E7%AE%97%E6%B3%95/23665989 */
弗洛伊德算法
求所有点之间的最短路径
#include<iostream>
#include<vector>
#include<string.h>
#define N 10
#define INF 65535
using namespace std;
int graph[N][N];
/* 弗洛伊德算法 求所有点之间的最短距离 核心思想: 经由中转点k所能得到的最短距离 弗洛伊德是一种动态规划算法,u是起点,v是终点,k是中转点 for k for u for v dist[u][v] = min(dist[u][v],dist[u][k]+dist[k][v]) 时间复杂度O(n^3) 问题: 为什么是最外层为中转点k 因为floyd本质目的是对于每个点对i-j的距离可以被其它点优化,而且可以被多个点共同优化, 如果循环k在内层,那么i,j每次只能得到一个点的优化。 例如 1 -> 3 -> 4 ->2 \ _ _ _ _ _ / 点1-2的路径只能通过单一的点,k在最内部: 1与2之间的最短路径,要么通过3,要么通过4; 1->3->2, 和1->4->2; 没有考虑到同时使用3,4来优化,即1->3->4->2 参考:https://blog.csdn.net/RunningBeef/article/details/114683747 */
void floyed(int n) {
//中间点
for (int k = 0; k < n; k++) {
//起点
for (int v0 = 0; v0 < n; v0++) {
//终点
for (int v1 = 0; v1 < n; v1++) {
if (graph[v0][k] + graph[k][v1] < graph[v0][v1]) {
graph[v0][v1] = graph[v0][k] + graph[k][v1];
}
}
}
}
}
int main() {
int ne = 10, nv = 6;
int edges[][3] = {
{
0,1,2},{
0,2,5},{
1,2,1},{
1,3,3},{
2,3,3},{
2,4,4},{
2,5,1},{
3,4,1},{
3,5,4},{
4,5,1}};
//二维整型数组直接利用 memset() 函数初始化时,只能初始化为 0 或 -1 ,否则将会被设为随机值
//手动初始化
for (int i = 0; i < nv; i++) {
for (int j = 0; j < nv; j++) {
graph[i][j] = INF;
}
graph[i][i] = 0;
}
//初始化边
int start = 1;
for (int i = 0; i < ne; i++) {
int v0 = edges[i][0];
int v1 = edges[i][1];
int w = edges[i][2];
graph[v0][v1] = w;
}
floyed(nv);
for (int i = 0; i < nv; i++) {
for (int j = 0; j < nv; j++) {
cout << graph[i][j] << " ";
}
cout << endl;
}
return 0;
}
BFS
广度优先遍历求两个点之间的最短路径
当遍历到目标节点,停止遍历,BFS求的是start到end之间的直线距离
1 -5
/ \ \
0 3-4
\ 2 /
求0,4的最短路径
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
typedef vector<vector<int>> VVI;
typedef vector<int> VI;
#define rep(i,n) for(int i = 0, i < n; i++)
VI bfs(VVI &edges,int n, int org, int dst) {
//建图
VVI g(n);
for (VI e : edges) {
int start = e[0], end = e[1];
g[start].push_back(end);
g[end].push_back(start);
}
//初始化距离和父节点数组
VI dis(n,-1);
VI fa(n,-1);
//初始化队列
queue<int> q;
q.push(org);
dis[org] = 0;
fa[org] = -1;
//bfs求解最短路径
while (!q.empty()) {
int x = q.front();
q.pop();
for (int y : g[x]) {
if (y == dst) {
fa[y] = x;
dis[dst] = dis[x] + 1;
break;
}
if (dis[y] < 0) {
fa[y] = x;
dis[y] = dis[x] + 1;
q.push(y);
}
}
if (dis[dst] != -1) {
break;
}
}
cout << dis[dst] << endl;
VI path;
int x = dst;
while(x != -1) {
path.push_back(x);
x = fa[x];
}
reverse(path.begin(),path.end());
return path;
}
int main() {
VVI edges = {
{
0,1},{
0,2},{
0,3},{
1,3},{
1,5},{
2,3},{
3,4},{
5,4}};
int n = 6;
VI path = bfs(edges,n,0,4);
for (int i = 0, n = path.size(); i < n; i++) {
cout << path[i] << (i==n-1 ? "" : " -> ");
}
cout << endl;
}
文章评论