DAG
Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度。Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行。基于Spark的任务调度原理,可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算。
DAG的宽窄依赖和阶段划分
内存迭代计算
Spark 并行度
Spark运行中的概念名词大全
Spark Shuffle
首先回顾MapReduce框架中Shuffle过程,整体流程图如下:
Spark在DAG调度阶段会将一个Job划分为多个Stage,上游Stage做map工作,下游Stage做reduce工作,其本质上还是MapReduce计算框架。Shuffle是连接map和reduce之间的桥梁,它将map的输出对应到reduce输入中,涉及到序列化反序列化、跨节点网络IO以及磁盘读写IO等。
Spark的Shuffle分为Write和Read两个阶段,分属于两个不同的Stage,前者是Parent Stage的最后一步,后者是Child Stage的第一步。
执行Shuffle的主体是Stage中的并发任务,这些任务分ShuffleMapTask和ResultTask两种,ShuffleMapTask要进行Shuffle,ResultTask负责返回计算结果,一个Job中只有最后的Stage采用ResultTask,其他的均为ShuffleMapTask。如果要按照map端和reduce端来分析的话,ShuffleMapTask可以即是map端任务,又是reduce端任务,因为Spark中的Shuffle是可以串行的;ResultTask则只能充当reduce端任务的角色。
Spark在1.1以前的版本一直是采用Hash Shuffle的实现的方式,到1.1版本时参考Hadoop MapReduce的实现开始引入Sort Shuffle,在1.5版本时开始Tungsten钨丝计划,引入UnSafe Shuffle优化内存及CPU的使用,在1.6中将Tungsten统一到Sort Shuffle中,实现自我感知选择最佳Shuffle方式,到的2.0版本,Hash Shuffle已被删除,所有Shuffle方式全部统一到Sort Shuffle一个实现中。
在Spark的中,负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。ShuffleManager随着Spark的发展有两种实现的方式,分别为HashShuffleManager和SortShuffleManager,因此spark的Shuffle有Hash Shuffle和Sort Shuffle两种。
在Spark 1.2以前,默认的shuffle计算引擎是HashShuffleManager。该ShuffleManagerHashShuffleManager有着一个非常严重的弊端,就是会产生大量的中间磁盘文件,进而由大量的磁盘IO操作影响了性能。
因此在Spark 1.2以后的版本中,默认的ShuffleManager改成了SortShuffleManager。SortShuffleManager相较于HashShuffleManager来说,有了一定的改进。主要就在于,每个Task在进行shuffle操作时,虽然也会产生较多的临时磁盘文件,但是最后会将所有的临时文件合并(merge)成一个磁盘文件,因此每个Task就只有一个磁盘文件。在下一个stage的shuffle read task拉取自己的数据时,只要根据索引读取每个磁盘文件中的部分数据即可。
Hash Shuffle
Shuffle阶段划分:
shuffle write:mapper阶段,上一个stage得到最后的结果写出
shuffle read :reduce阶段,下一个stage拉取上一个stage进行合并
1)未经优化的hashShuffleManager:
HashShuffle是根据task的计算结果的key值的hashcode%ReduceTask来决定放入哪一个区分,这样保证相同的数据一定放入一个分区,Hash Shuffle过程如下:
根据下游的task决定生成几个文件,先生成缓冲区文件在写入磁盘文件,再将block文件进行合并。
未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的。提出如下解决方案
2)经过优化的hashShuffleManager:
在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概念,每个shuffleFileGroup会对应一批磁盘文件,每一个Group磁盘文件的数量与下游stage的task数量是相同的。
未经优化:
上游的task数量:m
下游的task数量:n
上游的executor数量:k (m>=k)
总共的磁盘文件:m*n
优化之后的:
上游的task数量:m
下游的task数量:n
上游的executor数量:k (m>=k)
总共的磁盘文件:k*n
Sort Shuffle Manager
SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。当shuffle write task的数量小于等于spark.shuffle.sort.bypassMergeThreshold参数的值时(默认为200),就会启用bypass机制。
(1)该模式下,数据会先写入一个内存数据结构中(默认5M),此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。
(2)接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。
(3)排序:在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。
(4)溢写:排序过后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数据的形式分批写入磁盘文件。
(5)merge:一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之前所有的临时磁盘文件都进行合并成1个磁盘文件,这就是merge过程。
由于一个task就只对应一个磁盘文件,也就意味着该task为Reduce端的stage的task准备的数据都在这一个文件中,因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。
Sort Shuffle bypass机制
bypass运行机制的触发条件如下:
1)shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold=200参数的值。
2)不是map combine聚合的shuffle算子(比如reduceByKey有map combie)。
此时task会为每个reduce端的task都创建一个临时磁盘文件,并将数据按key进行hash,然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。
该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的HashShuffleManager来说,shuffle read的性能会更好。
而该机制与普通SortShuffleManager运行机制的不同在于:
第一,磁盘写机制不同;
第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。
总结:
SortShuffle也分为普通机制和bypass机制。
普通机制在内存数据结构(默认为5M)完成排序,会产生2M个磁盘小文件。
而当shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。或者算子不是聚合类的shuffle算子(比如reduceByKey)的时候会触发SortShuffle的bypass机制,SortShuffle的bypass机制不会进行排序,极大的提高了其性能。
Shuffle的配置选项
Shuffle阶段划分:
shuffle write:mapper阶段,上一个stage得到最后的结果写出
shuffle read :reduce阶段,下一个stage拉取上一个stage进行合并
Shuffle的配置选项:
spark 的shuffle调优:主要是调整缓冲的大小,拉取次数重试重试次数与等待时间,内存比例分配,是否进行排序操作等等
spark.shuffle.file.buffer
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小(默认是32K)。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写
到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.reducer.maxSizeInFlight:
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。(默认48M)
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现
,合理调节该参数,性能会有1%~5%的提升。
spark.shuffle.io.maxRetries and spark.shuffle.io.retryWait:
spark.shuffle.io.maxRetries :shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试
的最大次数。(默认是3次)
spark.shuffle.io.retryWait:该参数代表了每次重试拉取数据的等待间隔。(默认为5s)
调优建议:一般的调优都是将重试次数调高,不调整时间间隔。
spark.shuffle.memoryFraction:
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作内存比例。
spark.shuffle.manager
参数说明:该参数用于设置shufflemanager的类型(默认为sort).Spark1.5x以后有三个可选项:
Hash:spark1.x版本的默认值,HashShuffleManager
Sort:spark2.x版本的默认值,普通机制,当shuffle read task 的数量小于等于spark.shuffle.sort.bypassMergeThreshold参数,自动开启bypass 机制
spark.shuffle.sort.bypassMergeThreshold
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些
DAG是什么有什么用?
DAG有向无环图, 用以描述任务执行流程,主要作用是协助DAG调度器构建Task分配用以做任务管理
内存迭代\阶段划分?
基于DAG的宽窄依赖划分阶段,阶段内部都是窄依赖可以构建内存迭代的管道
DAG调度器是?
构建Task分配用以做任务管理
文章评论