AI 大模型超全落地场景&金融应用实践,8 月 16 - 19 日 FCon x AICon 大会联诀来袭、干货翻倍!
近日,斯坦福、UCSD、UC 伯克利和 Meta 的研究人员提出了一种全新架构,用机器学习模型取代 RNN 的隐藏状态。
这个模型通过对输入 token 进行梯度下降来压缩上下文,这种方法被称为「测试时间训练层(Test-Time-Training layers,TTT)」。该研究作者之一 Karan Dalal 表示,他相信这将根本性地改变语言模型方法。
自注意力机制在处理长上下文时表现良好,但其复杂度是二次的。现有的 RNN 层具有线性复杂度,但其在长上下文中的表现受限于其隐藏状态的表达能力。随着上下文长度的增加,成本也会越来越高。
作者提出了一种具有线性复杂度和表达能力强的隐藏状态的新型序列建模层。关键思路是让隐藏状态本身成为一个机器学习模型,并将更新规则设为自监督学习的一步。
论文中提出了两种实例:TTT-Linear 和 TTT-MLP,它们的隐藏状态分别是线性模型和两层 MLP。团队在 125M 到 1.3B 参数规模上评估了实例,并与强大的 Transformer 和现代 RNN Mamba 进行了比较。结果显示,与 Mamba 相比,TTT-Linear 的困惑度更低,FLOP 更少(左),对长上下文的利用更好(右):
这个结果代表了现有 RNN 的尴尬现实。一方面,RNN(与 Transformer 相比)的主要优点是其线性(与二次型)复杂性。这种渐近优势只有在长上下文的实践中才能实现,根据下图,这个长度是 8k。另一方面,一旦上下文足够长,现有的 RNN(如 Mamba)就很难真正利用所依赖的额外信息。
并且,大量的实验结果表明:TTT-Linear 和 TTT-MLP 都匹配或超过基线。与 Transformer 类似,它们可以通过限制更多的代币来不断减少困惑,而 Mamba 在 16k 上下文后则不能。经过初步的系统优化,TTT Linear 在 8k 环境下已经比 Transformer 更快,并且在 wall-clock 时间上与 Mamba 相匹配。
TTT 层在理论上和实验评估中表现出色,尤其是在长上下文处理和硬件效率方面。如果在实际应用中能够解决一些潜在的工程挑战,如大规模部署和集成问题,工业界对 TTT 层的接受度也将逐步提升。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
学会后的收获:
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
获取方式:
有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】
文章评论