点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
转自:https://blog.csdn.net/cshyxxxl/article/details/106382824
作者:cshyxxxl
以iPhone背壳为例,进行瑕疵检测
需求:利用传统算法检测iPhone手机背壳是否瑕疵并给出瑕疵率
工具:摄像头/iPhone 6s/偏振镜等
传统算法方向的选择最近做图像处理与识别相关的事情,先从OpenCV/Matlab入手,看传统算法在瑕疵检测方向能做到什么程度。
因之前并没有相关的经验,乍开始生怕闭门造车,遂多方搜寻,相关的会议与论述很多,不乏深度学习或者深度学习与传统算法相结合的,以有限的资源来看,深度学习并没有特别大的优势:表现在
1. 深度学习对训练图库的要求很高,很难得到很好的训练结果
2. 深度学习的灵活度较低,若适用场景有些许改变,均需要重新训练,这在商用时会是很大的问题
3. 深度学习的部署成本较高,同时对部署场景有较高要求(光线/摄像效果等)
当然,深度学习大势所趋,也不必因噎废食,万一是一时的浅见呢。后续也会投身到这个方向去。
瑕疵检测关注的两个问题瑕疵的标注对瑕疵的标注是为了更直观的展示,主要是给人看的
瑕疵的量化真正机器关心的是怎么量化,是用数量表示还是百分比是个值得考虑的问题
历程1.图像去噪->灰度化->二值化二值化之后就可以看到绝大部分的瑕疵点已经凸显出来了,但是有三个问题:
1. 黑点瑕疵与白点瑕疵是二值化的两个极端,故无法同时出现。
2. 量化如何去除Logo与其他印刷的干扰
问题1后续用边缘检测替代
问题2采用像素点计数的方法,计算百分比,然后与无瑕疵的百分比作比较,准确度不高,也显得low low的。
2.图像去噪->灰度化->canny->形态学(闭运算)->连通域边缘检测后进行闭运算,瑕疵会形成大大小小的连通域,可以统计连通域的个数,然后与无瑕疵logo与其他印刷形成的连通域个数作比较,这种情况几乎不会漏掉。这是感觉可行的选择之一。
3.OpenCV matchTemplate实验室条件下,可以营造比较理想的条件,所以考虑了OpenCV的模板匹配,同时也测试了模板匹配在不理想情况下的表现。
结果证明因为手机瑕疵检测的需求目标较低,模板匹配是比较能够胜任的一个办法。只要模板与识别目标的拍摄角度差别不是太大,都可以很好的识别瑕疵。图片的轻微缩放大多也可以应付。
其他处理前面都是软件方面处理的流程,在如何获得更加理想的图片方面也做了一些尝试:
采用各种不同颜色的光源,如蓝光/红光,区别不大
对图片进行白平衡调整,有改善
摄像头加偏振镜防止图像反光,有改善但不明显
图片浮雕处理,肉眼看上去瑕疵显著了,但对机器而言并没有区别,故没有采纳
声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
文章评论