大模型的局限性体现在缺少实时性、无法获取私有知识等方面,而RAG可以帮助解决私有知识问题,让私有知识库和AI大模型更好地融合。怎么理解RAG的原理、应用场景和优缺点?一起来看看本文的分享。
今天我们来学习检索增强生成(Retrieval-Augmented Generation,RAG)。
RAG可以将私有知识库和AI大模型融合,让大模型“知道”我们的私有知识,变得越来越“懂”我们。
一、AI大模型的局限性
使用过大模型的小伙伴应该知道,虽然大模型看起来无所不能,但是它也经常胡编乱造,没有足够的确定性,这也限制了大模型在各种场景的落地。
大模型的局限性,可以简单归纳为以下两点:
- 没有实时性:AI大模型的知识不是实时的,最新的GPT-4 Turbo也只是把知识库更新到2023年4月,所以无从得知该时间之后发生的事情。
- 无法获取私有知识:大模型的训练数据主要来源于互联网,不可能拿到个人或企业的私有数据,所以无法回答私有问题。
针对实时性问题,一般通过Actions或Function Calling(函数调用,可以理解为接口回调)等方式,让大模型实时调用搜索、地图、甚至企业自己实现的api,获取各种需要的实时信息,减少幻觉,提升确定性。
而RAG可以解决私有知识问题,它通过外挂知识库的方式,让大模型可以根据检索到的内容,回答私有库的相关问题,也就是所谓的检索增强,目的同样是提升确定性。
二、基本概念
RAG的核心目的是通过某种途径把我们的知识告诉给AI大模型,其核心流程就是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”,看起来也就更“懂”我们。
那么具体要如何实现呢?再看一下核心流程,会发现有一个必须解决的问题,就是如何“根据用户提问,从私有知识中检索到包含答案的内容”,用户的提问是自然语言(包含复杂的语义理解),传统的关键字检索(Elastic Search)是无法理解语义的,这时候就需要引入向量检索的概念了。
- 向量:文本的语义关系在底层被处理为向量,向量就是一组浮点数,例如[0.72, 0.42, …],代表该文本在N维空间里的坐标。在空间中距离越近的向量,语义也就越接近。一般使用欧式距离或余弦距离来衡量向量的相似度。
- 向量检索:向量检索实际上是将文本分段转换成了一个个向量,通过余弦距离或欧式距离来计算两个向量之间的相似度,向量相似度越高,表示对应的文本语义相似度越高。
- 向量数据库:专门为向量检索设计的中间件。
我们可以通过向量检索来获得与用户问题语义最相近的私有知识库的内容,即便用户问题中没有包含关键字,也可以通过语义的相关性搜索到“包含答案的内容”。
实现RAG的具体步骤如下:
1.加载私有知识库文档,并将文本切分为一个个小片段,需要注意切分的粒度,然后将切分后的文本转换成向量,存入向量数据库。
2.将用户的提问内容也转换成向量,在向量数据库中检索相似的文本内容,检索结果就是“包含答案的内容”。
3.将用户的提问内容和检索到的“包含答案的内容”组装成新的提示词,发给AI大模型。
4.AI大模型参考“包含答案的内容”(私有化的知识资料),回答用户的问题。
这样我们就可以收获一位更“懂我”的大模型了。
三、应用场景
RAG可以有效扩展大模型的知识库,以下是一些具体的例子:
- 问答系统:RAG可以用于构建问答系统,用户提出问题,RAG模型从大规模的文档集合中检索相关的文档,然后生成回答。
- 对话系统:在对话系统中,RAG可以用于生成更丰富、更具信息量的回答。
- 文档生成:RAG可以用于生成包含特定信息的文档,例如新闻报道、研究报告等。
四、优缺点
RAG的优点:
- 生成的回答更丰富:由于在生成回答时会考虑检索到的文档,因此生成的回答通常更丰富、更具信息量。
- 能处理开放领域的问题:传统的生成模型通常只能处理特定领域的问题,而RAG模型可以处理开放领域的问题,因为它可以从大规模的文档集合中检索信息。
RAG的缺点:
- 计算成本高:RAG模型需要在大规模的文档集合中进行检索,这会增加计算成本。
- 依赖文档质量:RAG模型的性能在很大程度上依赖于文档的质量,如果文档质量差或切分粒度不合适,可能会影响模型的性能。
- 可能产生不准确的回答:虽然RAG模型可以生成丰富的回答,但是如果检索到的文档包含错误的信息,可能会导致生成的回答不准确。
五、总结
本文我们主要介绍了RAG的基本原理,RAG可以有效扩展大模型的知识库,有效提升回答的确定性,让AI大模型变得更加“懂”我们。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
文章评论