04-树7 二叉搜索树的操作集
分数 30
作者 陈越
单位 浙江大学
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
BinTree Insert( BinTree BST, ElementType X ){
if(!BST){
BST = malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right =NULL;
}
else if (X>BST->Data)BST->Right = Insert(BST->Right,X);
else BST->Left = Insert(BST->Left,X);
return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
if(!BST){
printf("Not Found\n");
return BST;
}
if (X==BST->Data){
BinTree node;
if(BST->Left && BST->Right){
node = FindMin(BST->Right);
BST->Data = node->Data;
BST->Right =Delete(BST->Right,BST->Data);//理解
}else{
node=BST;
if(!node->Left)
BST=BST->Right;
else if(!node->Right)
BST=BST->Left;
free(node);
}
}
else if (X>BST->Data)BST->Right = Delete(BST->Right,X);
else BST->Left = Delete(BST->Left,X);
return BST;
}
Position Find( BinTree BST, ElementType X ){
while(BST){
if (X>BST->Data)BST= BST->Right;
else if(X<BST->Data) BST = BST->Left;
else return BST;
}
return NULL;
/*递归写法一 找完左边找右边 BinTree p; if(BST==NULL) return NULL; else if (BST->Data==X) return BST; else{ p=Find(BST->Left,X); if(p!=NULL) return p; else return Find(BST->Right,X); } 递归写法二 加判断 if(BST==NULL) return NULL; else if (X==BST->Data)return BST; else if (X>BST->Data)return Find(BST->Right,X); else return Find(BST->Left,X); */
}
Position FindMin( BinTree BST ){
if(!BST)return NULL;
if(!BST->Left)return BST;
else return FindMin(BST->Left);
}
Position FindMax( BinTree BST ){
if(!BST)return NULL;
if(!BST->Right)return BST;
else return FindMax(BST->Right);
}
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
文章评论