当前位置:网站首页>线性回归(Linear Regression)

线性回归(Linear Regression)

2021-10-14 06:46:42 J519LEE

1.1什么是线性回归

我们首先用弄清楚什么是线性,什么是非线性。

  • 线性:两个变量之间的关系一次函数关系的——图象是直线,叫做线性。

    注意:题目的线性是指广义的线性,也就是数据与数据之间的关系。

  • 非线性:两个变量之间的关系不是一次函数关系的——图象不是直线,叫做非线性。

相信通过以上两个概念大家已经很清楚了,其次我们经常说的回归回归到底是什么意思呢。

  • 回归:人们在测量事物的时候因为客观条件所限,求得的都是测量值,而不是事物真实的值,为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。

通俗的说就是用一个函数去逼近这个真实值,那又有人问了,线性回归不是用来做预测吗?是的,通过大量的数据我们是可以预测到真实值的。

1.2线性回归要解决什么问题

对大量的观测数据进行处理,从而得到比较符合事物内部规律的数学表达式。也就是说寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测。解决的就是通过已知的数据得到未知的结果。例如:对房价的预测、判断信用评价、电影票房预估等。

1.3线性回归的一般模型

版权声明
本文为[J519LEE]所创,转载请带上原文链接,感谢
https://j519lee.blog.csdn.net/article/details/120754340

随机推荐