# hdoj 1711 KMP Number Sequence

2021-01-22 14:17:47 xindoo

Problem Description

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

Input

The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].

Output

For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.

Sample Input

```2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1```

Sample Output

```6
-1
#include <stdio.h>

int n, m;
int a[1000005];
int b[10005];
int f[10005];

void getfail()
{
f[0] = 0;
f[1] = 0;
for (int i = 1; i < m; i++)
{
int j = f[i];
while (j && b[i] != b[j])
j = f[j];
f[i+1] = b[j] == b[i] ? j + 1 : 0;
}
}

int main()
{
int flag, i, j, t;
scanf("%d",&t);
while (t--)
{
scanf("%d %d",&n,&m);
for (i = 0; i < n; i++)
scanf("%d",&a[i]);
for (i = 0; i < m; i++)
scanf("%d",&b[i]);
getfail();
for (i = 0;i <= m; i++) printf("%d ",f[i]);  puts("");
flag = 1;
j = 0;
for (i = 0;i < n;i++)
{
while (j && b[j] != a[i])
j = f[j];
if (b[j] == a[i])
j++;
if (j == m)
{
flag = 0;
printf("%d\n",i - m + 1);
}
}
if (flag)
puts("-1");
}
return 0;
}```

Participation of this paper Tencent cloud media sharing plan , You are welcome to join us , share .

https://chowdera.com/2021/01/20210122141432030x.html