当前位置:网站首页>Markdown mathematical formula

Markdown mathematical formula

2020-12-05 03:58:55 Wang zhangfei

markdown The mathematical formula ( Introduction to the common edition )

1. inline

$$ f(x)=x $$

f ( x ) = x f(x)=x f(x)=x

2. The paragraph

$$
s=\sum_1^n{
    n_i}
$$

s = ∑ 1 n n i s=\sum_1^n{n_i} s=1nni

3. Superscript

$$ x^2 $$

x 2 x^2 x2

4. Subscript

$$ x_i $$

x i x_i xi

5. Brackets

The parentheses and square brackets can be input directly , for example :
parentheses (1234)
square brackets [1234]

Curly braces

Braces already have a special meaning , Curly braces in a formula need to be expressed in code

$$ \lbrace a+x \rbrace $$

{ a + x } \lbrace a+x \rbrace { a+x}

$$
f(x)=\begin{
    cases} 
		1, & x>0\\ 
		0, & x=0\\
		-1, & x<0
\end{
    cases}
$$

f ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 f(x)=\begin{cases} 1, & x>0\\ 0, & x=0\\ -1, & x<0 \end{cases} f(x)=1,0,1,x>0x=0x<0

Angle brackets

$$ \langle x \rangle $$

* x * \langle x \rangle *x*

Round up

$$ \lceil \frac{
    x}{
    2} \rceil $$

⌈ x 2 ⌉ \lceil \frac{x}{2} \rceil 2x

Round down

$$ \lfloor x \rfloor $$

⌊ x ⌋ \lfloor x \rfloor x
Be careful : Scaling the original bracket does not , Such as

$$
    \lbrace  \sum_{
    i=0}^{
    n}i^{
    2}=\frac{
    2a}{
    x^2+1}   \rbrace
$$

{ ∑ i = 0 n i 2 = 2 a x 2 + 1 } \lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \rbrace { i=0ni2=x2+12a}

When you need to scale brackets , You can join \left \right

$$  
\left\lbrace 
\sum_{
    i=0}^{
    n}i^{
    2}=\frac{
    2a}{
    x^2+1}                            
\right\rbrace 
$$

{ ∑ i = 0 n i 2 = 2 a x 2 + 1 } \left\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \right\rbrace { i=0ni2=x2+12a}

6. Summation and integration

\sum It means sum , The subscript represents the lower bound of summation , The superscript represents the upper limit of the sum Such as :

$$
\sum_i^n
$$

∑ i n \sum_i^n in

\int Representation integral , alike , The subscript represents the lower limit of the integral , The superscript is the upper limit of the integral . Such as :

$$ \int_{
    1}^{
    \infty} $$

∫ 1 ∞ \int_{1}^{\infty} 1

There are also symbols like

$$
\prod_{
    1}^{
    n} \\
\bigcup_{
    1}^{
    n} \\
\iint_{
    1}^{
    n}
$$

∏ 1 n ⋃ 1 n ∬ 1 n \prod_{1}^{n} \\ \bigcup_{1}^{n} \\ \iint_{1}^{n} 1n1n1n

7. Fraction and radical

Fraction

$$
\frac ab
$$

a b \frac ab ba

$$
\frac{
    1}{
    2}
$$

1 2 \frac{1}{2} 21

It's fine too

$$
{
    a+1 \over b+1}
$$

a + 1 b + 1 {a+1 \over b+1} b+1a+1

Radical

$$
\sqrt[x+1]{
    x^2}
$$

x 2 x + 1 \sqrt[x+1]{x^2} x+1x2

8. typeface

The blackboard is bold : \mathbb

9. Special functions and symbols

Summation symbol

$$\sum_{
    i=0}^{
    n}$$

∑ i = 0 n \sum_{i=0}^{n} i=0n

Multiplicative symbol

$$\prod$$

∏ \prod

Limit sign

 $\lim_{
    x\to +\infty}$

lim ⁡ x → + ∞ \lim_{x\to +\infty} x+lim

convergence

$$x_n\stackrel{
    p}\longrightarrow0$$

x n * p 0 x_n\stackrel{p}\longrightarrow0 xn*p0

vector

$$\vec{
    a}$$

a ⃗ \vec{a} a
or

 $$\overrightarrow{
    a} $$

a → \overrightarrow{a} a

$$\hat y=a\hat x+b$$

y ^ = a x ^ + b \hat y=a\hat x+b y^=ax^+b
Transpose symbol

$$\mathtt{
    X}'$$

X ′ \mathtt{X}' X
Exclusive or

⨁ $\bigoplus$

⨁ \bigoplus
 Insert picture description here

10. Space

11. form

|   Header    |  Header   |
|  ----  | ----  |
|  Cell   |  Cell  |
|  Cell   |  Cell  |
Header Header
Cell Cell
Cell Cell

We can set the alignment of the table :
-: Set the right alignment of content and title bar .
:- Set the content and title bar to the left .
:-: Set the content to center with the title bar .

12. matrix

$$
  \begin{
    matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{
    matrix} \tag{
    1}
$$

1 2 3 4 5 6 7 8 9 (1) \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \tag{1} 147258369(1)

$$
 \left\{
    
 \begin{
    matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{
    matrix}
  \right\} \tag{
    2}
$$

{ 1 2 3 4 5 6 7 8 9 } (2) \left\{ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right\} \tag{2} 147258369(2)

$$
 \left[
 \begin{
    matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{
    matrix}
  \right] \tag{
    3}
$$

[ 1 2 3 4 5 6 7 8 9 ] (3) \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] \tag{3} 147258369(3)

$$
\left[
\begin{
    matrix}
 1      & 2      & \cdots & 4      \\
 7      & 6      & \cdots & 5      \\
 \vdots & \vdots & \ddots & \vdots \\
 8      & 9      & \cdots & 0      \\
\end{
    matrix}
\right]
$$

[ 1 2 ⋯ 4 7 6 ⋯ 5 ⋮ ⋮ ⋱ ⋮ 8 9 ⋯ 0 ] \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] 178269450

$$ 
\left[
    \begin{
    array}{
    cc|c}
      1 & 2 & 3 \\
      4 & 5 & 6
    \end{
    array}
\right] \tag{
    7}
$$

[ 1 2 3 4 5 6 ] (7) \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} [142536](7)

13. Formula alignment

$$
\begin{
    aligned}
a &= b + c\\
  &= d + e + f
\end{
    aligned}
$$

a = b + c = d + e + f \begin{aligned} a &= b + c\\ &= d + e + f \end{aligned} a=b+c=d+e+f

14. Classification expression

15. effect

Use the above tutorial , The results are as follows :

f ( x ) = x f(x)=x f(x)=x

s = ∑ 1 n + 1 n j s=\sum_1^{n+1}{n_j} s=1n+1nj

x 2 x^2 x2

x i x_i xi

{ a + x } \lbrace a+x \rbrace { a+x}

* x * \langle x \rangle *x*

⌈ x 2 ⌉ \lceil \frac{x}{2} \rceil 2x

⌊ x ⌋ \lfloor x \rfloor x

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

y = ∫ 1 2 x y 2 e − l o g x d x   . y = \int_1^2 x^{y^2}e^{-log_x}dx\,. y=12xy2elogxdx.

y = ∫ 0 ∞ x y 2 e − l o g x d x   . y = \int_0^\infty x^{y^2}e^{-log_x}dx\,. y=0xy2elogxdx.

版权声明
本文为[Wang zhangfei]所创,转载请带上原文链接,感谢
https://chowdera.com/2020/12/202012042254589393.html