当前位置:网站首页>Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
2020-11-06 01:22:05 【Elementary school students in IT field】
windows10 tensorflow( Two ) Regression analysis of principle and actual combat , Deep learning framework ( The gradient descent method is used to solve the regression parameters )
TF Data generation : Reference resources TF The data generated 12 Law
TF Basic principles and conceptual understanding : tensorflow( One )windows 10 64 Bit installation tensorflow1.4 And basic concept interpretation tf.global_variables_initializer
Model :
A simple linear regression y = W * x + b, use numpy Building complete regression data , And increase interference noise
import numpy as np
# Establish a linear regression equation of one variable y=0.1x1+0.3 , At the same time, a positive distribution deviation np.random.normal(0.0,0.03) For witnessing TF The algorithm of
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(loc=0.0,scale=0.66)
y1=x1*0.1+0.3+np.random.normal(0.0,0.03)
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
Graphic display Data distribution results
import matplotlib.pyplot as plt
#https://www.cnblogs.com/zqiguoshang/p/5744563.html
##line_styles=['ro-','b^-','gs-','ro--','b^--','gs--'] #set line style
plt.plot(x_data,y_data,'ro',marker='^',c='blue',label='original_data')
plt.legend()
plt.show()
adopt TensorFlow The code finds the best parameters W And b, Make the input data of x_data, Generate output data y_data, In this case, there will be a straight line y_data=W*x_data+b. The reader knows W It will be close 0.1,b near 0.3, however TensorFlow Don't know , It needs to calculate the value itself . Therefore, the gradient descent method is used to solve the data iteratively
import tensorflow as tf
import math
# One 、 establish graph data
# Arbitrarily construct the parameters of a univariate regression equation W And b
W=tf.Variable(tf.random_uniform([1], minval=-1.0, maxval=1.0))
b=tf.Variable(tf.zeros([1]))
y=W*x_data+b
# Define the following minimum variance
#1. Define the minimum square root of error
loss=tf.reduce_mean(tf.square(y-y_data))
#2.learning_rate=0.5
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.5)
#3. Optimize the minimum
train=optimizer.minimize(loss)
# Two 、 Initialize variable
init=tf.global_variables_initializer()
# 3、 ... and 、 start-up graph
sess=tf.Session()
sess.run(init)
for step in range(8):
sess.run(train)
print("step={},sess.run=(W)={},sess.run(b)={}".format(step,sess.run(W),sess.run(b)))
Here's the iteration 8 Results of . Gradient is like a compass , Guiding us in the smallest direction . To calculate the gradient ,TensorFlow It will take the derivative of the wrong function , In our case , The algorithm needs to work on W and b Calculating partial derivatives , To indicate the direction of advance in each iteration .
The following is the visualization of each iteration :
#Graphic display
# print(sub_1+'41')
# Be careful : You can use commas for each parameter , Separate . The first parameter represents the number of rows in the subgraph ; The second parameter represents the number of columns in the row of images ; The third parameter represents the number of images in each row , From left to right , From top to next add .
plt.subplot(4,2,step+1)
plt.plot(x_data,y_data,'ro')
plt.plot(x_data,sess.run(W)*x_data+
sess.run(b),label=step)
plt.legend()
plt.show()

版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢
边栏推荐
- C++ 数字、string和char*的转换
- C++学习——centos7上部署C++开发环境
- C++学习——一步步学会写Makefile
- C++学习——临时对象的产生与优化
- C++学习——对象的引用的用法
- C++编程经验(6):使用C++风格的类型转换
- Won the CKA + CKS certificate with the highest gold content in kubernetes in 31 days!
- C + + number, string and char * conversion
- C + + Learning -- capacity() and resize() in C + +
- C + + Learning -- about code performance optimization
猜你喜欢
-
C + + programming experience (6): using C + + style type conversion
-
Latest party and government work report ppt - Park ppt
-
在线身份证号码提取生日工具
-
Online ID number extraction birthday tool
-
️野指针?悬空指针?️ 一文带你搞懂!
-
Field pointer? Dangling pointer? This article will help you understand!
-
HCNA Routing&Switching之GVRP
-
GVRP of hcna Routing & Switching
-
Seq2Seq实现闲聊机器人
-
【闲聊机器人】seq2seq模型的原理
随机推荐
- LeetCode 91. 解码方法
- Seq2seq implements chat robot
- [chat robot] principle of seq2seq model
- Leetcode 91. Decoding method
- HCNA Routing&Switching之GVRP
- GVRP of hcna Routing & Switching
- HDU7016 Random Walk 2
- [Code+#1]Yazid 的新生舞会
- CF1548C The Three Little Pigs
- HDU7033 Typing Contest
- HDU7016 Random Walk 2
- [code + 1] Yazid's freshman ball
- CF1548C The Three Little Pigs
- HDU7033 Typing Contest
- Qt Creator 自动补齐变慢的解决
- HALCON 20.11:如何处理标定助手品质问题
- HALCON 20.11:标定助手使用注意事项
- Solution of QT creator's automatic replenishment slowing down
- Halcon 20.11: how to deal with the quality problem of calibration assistant
- Halcon 20.11: precautions for use of calibration assistant
- “十大科学技术问题”揭晓!|青年科学家50²论坛
- "Top ten scientific and technological issues" announced| Young scientists 50 ² forum
- 求反转链表
- Reverse linked list
- js的数据类型
- JS data type
- 记一次文件读写遇到的bug
- Remember the bug encountered in reading and writing a file
- 单例模式
- Singleton mode
- 在这个 N 多编程语言争霸的世界,C++ 究竟还有没有未来?
- In this world of N programming languages, is there a future for C + +?
- es6模板字符
- js Promise
- js 数组方法 回顾
- ES6 template characters
- js Promise
- JS array method review
- 【Golang】️走进 Go 语言️ 第一课 Hello World
- [golang] go into go language lesson 1 Hello World